當前位置:成語大全網 - 古籍修復 - π值是如何計算出來的?

π值是如何計算出來的?

早期的π值大體都是通過測量圓周長,再測量圓的直徑,相除得到的估計值。

公元前3世紀,用圓的內接和外切正多邊形的周長給出圓周率的下界和上界,正多邊形的邊數越多,計算出π值的精度越高。

中國三國時期的數學家劉徽,用割圓術計算。

17世紀時,發明了微積分,利用微積分和冪級數展開的結合導致了用無窮級數來計算π值。

電子計算機出現後,人們開始利用它來計算圓周率π的數值,π的數值長度以驚人的速度擴展著:1949年算至小數點後2037位,1973年算至100萬位,1983年算至1000萬位,1987年算至1億位,2002年算至1萬億位,至2011年,已算至小數點後10萬億位。

擴展資料:

圓周率的歷史發展:

關於π最早的文字記載來自公元前2000年前後的古巴比倫人,它們認為π=3.125,而古埃及人使用π=3.1605。中國古籍裏記載有“圓徑壹而周三”,即π=3,這也是《聖經》舊約中所記載的π值。在古印度耆那教的經典中,可以找到π≈3.1622的說法。這些早期的π值大體都是通過測量圓周長,再測量圓的直徑,相除得到的估計值。

到了公元前3世紀,古希臘大數學家阿基米德第壹個給出了計算圓周率π的科學方法:用圓的內接和外切正多邊形的周長給出圓周率的下界和上界,正多邊形的邊數越多,計算出π值的精度越高。阿基米德從正六邊形出發,逐次加倍正多邊形的邊數,利用勾股定理(西方稱為畢達哥拉斯定理),就可求得邊數加倍後的正多邊形的邊長。因此,隨著邊數的不斷加倍,阿基米德的方法原則上可以算出任意精度的π值。

無獨有偶,中國三國時期的數學家劉徽,在對《九章算術》作註時,在公元264年給出了類似的算法,並稱其為割圓術。所不同的是,劉徽是通過用圓內接正多邊形的面積來逐步逼近圓面積來計算圓周率的。約公元480年,南北朝時期的大科學家祖沖之就用割圓術算出了3.141?592?6<π<3.141?592?7,這個π值已經準確到7位小數,創造了圓周率計算的世界紀錄。17世紀之前,計算圓周率基本上都是用上述幾何方法(割圓術)。

關於π值的研究,革命性的變革出現在17世紀發明微積分時,微積分和冪級數展開的結合導致了用無窮級數來計算π值的分析方法,這就拋開了計算繁雜的割圓術。那些微積分的先驅如帕斯卡、牛頓、萊布尼茨等都對π值的計算做出了貢獻。1706年,英國數學家梅欽得出了現今以其名字命名的公式,給出了π值的第壹個快速算法。梅欽因此把π值計算到了小數點後100位。以後又發現了許多類似的公式,π的計算精度也越來越高。

參考資料:

科普中國-圓周率是怎樣算出來的