fillna(value)
參數:value
說明:用於填充缺失值的標量值或字典對象
#通過常數調用fillna
書寫方式:df.fillna(0) #用0替換缺失值
#通過字典調用fillna
書寫方式:df.fillna({1:0.5,3:-1})
fillna(value,inplace=True)
參數:inplace
說明:修改調用者對象而不產生副本
#總是返回被填充對象的引用
書寫方式:df.fillna(0,inplace=True)
fillna(method=ffill)
參數:method
說明:插值方式。如果函數調用時未指定其他參數的話,默認為“ffill”
對reindex有效的那些插值方法也可用於fillna:
In [23]: from numpy import nan as NA
In [21]: df=DataFrame(np.random.randn(6,3))
In [24]: df.ix[2:,1]=NA;df.ix[4:,2]=NA
In [25]: df
Out[25]:
0 1 2
0 -0.863925 1.005127 -0.529901
1 0.701671 -0.501728 -0.617387
2 -0.951060 NaN -0.263626
3 0.810230 NaN -0.277401
4 -0.403899 NaN NaN
5 -0.081091 NaN NaN
In [26]: df.fillna(method='ffill')
Out[26]:
0 1 2
0 -0.863925 1.005127 -0.529901
1 0.701671 -0.501728 -0.617387
2 -0.951060 -0.501728 -0.263626
3 0.810230 -0.501728 -0.277401
4 -0.403899 -0.501728 -0.277401
5 -0.081091 -0.501728 -0.277401
fillna(limit=2)
參數:limit
說明:(對於前向和後向填充)可以連續填充的最大數量
In [27]: df.fillna(method='ffill',limit=2)
Out[27]:
0 1 2
0 -0.863925 1.005127 -0.529901
1 0.701671 -0.501728 -0.617387
2 -0.951060 -0.501728 -0.263626
3 0.810230 -0.501728 -0.277401
4 -0.403899 NaN -0.277401
5 -0.081091 NaN -0.277401
fillna(data.mean())
只要稍微動動腦子,就可以利用fillna實現許多別的功能。比如說,可以傳入Series的平均值或中位數:
In [28]: data=Series([1,NA,3.5,NA,7])
In [29]: data.fillna(data.mean())