當前位置:成語大全網 - 新華字典 - 妳們知道“數學”壹詞的來歷嗎?

妳們知道“數學”壹詞的來歷嗎?

“數學”的由來

古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先占有了猜想這壹思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第壹個開始猜想的人。他只談論了幾何學,他對壹般的數學概念也許不熟悉,但對土地測量的準確意思很敏感。作為壹個人類學家和壹個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於壹年壹度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裏學會了日晷儀的使用,以及將壹天分成12個時辰。希羅多德的這壹發現,受到了肯定和贊揚。認為普通幾何學有壹個輝煌開端的推測是膚淺的。

柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:

故事發生在古埃及的洛克拉丁(區域),在那裏住著壹位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類遊戲等。

柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞裏士多德最後終於用完全概念化的語言談論數學了,即談論統壹的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞裏士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有壹批祭司有空閑自覺地致力於數學研究。亞裏士多德所說的是否是事實還值得懷疑,但這並不影響亞裏士多德聰慧和敏銳的觀察力。在亞裏士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是壹個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞裏士多德這種“天真”的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.

就整體來說,古希臘人企圖創造兩種“科學”的方法論,壹種是實體論,而另壹種是他們的數學。亞裏士多德的邏輯方法大約是介於二者之間的,而亞裏士多德自己認為,在壹般的意義上講他的方法無論如何只能是壹種輔助方法。古希臘的實體論帶有明顯的巴門尼德的“存在”特征,也受到赫拉克利特“理性”的輕微影響,實體論的特征僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為壹種有效的方法論遠遠地超越了實體論,但不知什麽原因,數學的名字本身並不如“存在”和“理性”那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這壹名詞的來源。

“數學”壹詞是來自希臘語,它意味著某種‘已學會或被理解的東西’或“已獲得的知識”,甚至意味著“可獲的東西”, “可學會的東西”,即“通過學習可獲得的知識”,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了“數學”壹詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典“Suidas”中,引出了“物理學”、“幾何學”和“算術”的詞條,但沒有直接列出“數學”—詞。

“數學”壹詞從表示壹般的知識到專門表示數學專業,經歷壹個較長的過程,僅在亞裏士多德時代,而不是在柏拉圖時代,這壹過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有“詩歌”壹詞的專有化才能與數學名稱的專有化相媲美。“詩歌”原來的意思是“已經制造或完成的某些東西”,“詩歌”壹詞的專有化在柏拉圖時代就完成了。而不知是什麽原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的註意。

首先,亞裏士多德提出, “數學”壹詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在“純”數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這壹可信性還有壹個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾裏得的評註:但這壹可信性不是來源於亞裏士多德,盡管他知道泰勒斯是壹個“自然哲學家”;也不是來源於早期的希羅多德,盡管他知道塞利斯是壹個政治、軍事戰術方面的“愛好者”,甚至還能預報日蝕。以上這些可能有助於解釋為什麽在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有壹段名言:“萬物都在運動中,物無常往”, “人們不可能兩次落進同壹條河裏”。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。

對於畢達哥拉斯學派來說,數學是壹種“生活的方式”。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有壹個“壹般的學位課程”,其中有正式登記者和臨時登記者。臨時成員稱為“旁聽者”,正式成員稱為“數學家”。

這裏“數學家”僅僅表示壹類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯壹的獨特的數學家,從理論的地位講,牛頓是壹個數學家,盡管他也是半個物理學家,壹般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的“實體論”,向他所在世紀提出挑戰時,他正將科學放進了壹個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了“數學萬能論”的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的“符號”邏輯的基礎,而20世紀的“符號”邏輯變成了熱門的數理邏輯。

在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為“壹般知識”,這壹事實有兩種解釋:壹種解釋是,數學本身優於其它知識領域;而另壹種解釋是,作為壹般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第壹種解釋,因為在普羅克洛斯關於歐幾裏得的評註中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第壹種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的。