當前位置:成語大全網 - 新華字典 - Python性能提升神器!lru_cache的介紹和講解

Python性能提升神器!lru_cache的介紹和講解

我們經常談論的緩存壹詞,更多的類似於將硬盤中的數據存放到內存中以至於提高讀取速度,比如常說的redis,就經常用來做數據的緩存。 Python的緩存(lru_cache)是壹種裝飾在被執行的函數上,將其執行的結果緩存起來,當下次請求的時候,如果請求該函數的傳參未變則直接返回緩存起來的結果而不再執行函數的壹種緩存裝飾器。

那它和redis的區別在哪?有什麽優勢?怎麽使用? 下面為妳講解

1.現在我們先不使用緩存來寫壹個求兩數之和的函數,並調用執行它兩次:

執行結果

可以看到 test 被執行了兩次,現在我們加上緩存再進行執行:

執行結果

可以看到 test 函數只被執行了壹次,第二次的調用直接輸出了結果,使用了緩存起來的值。

2.當我們使用遞歸求斐波拉契數列 (斐波那契數列指的是這樣壹個數列:0,1,1,2,3,5,8,它從第3項開始,每壹項都等於前兩項之和) 的時候,緩存對性能的提升就尤其明顯了:

不使用緩存求第40項的斐波拉契數列

執行時間

使用緩存求第40項的斐波拉契數列:

執行時間

兩個差距是非常明顯的,因為不使用緩存時,相當於要重復執行了很多的函數,而使用了 lru_cache 則把之前執行的函數結果已經緩存了起來,就不需要再次執行了。

查看lru_cache源碼會發現它可以傳遞兩個參數: maxsize 、 typed :

代表被lru_cache裝飾的方法最大可緩存的結果數量 (被裝飾方法傳參不同壹樣,則結果不壹樣;如果傳參壹樣則為同壹個結果) , 如果不指定傳參則默認值為128,表示最多緩存128個返回結果,當達到了128個時,有新的結果要保存時,則會刪除最舊的那個結果。如果maxsize傳入為None則表示可以緩存無限個結果;

默認為false,代表不區分數據類型,如果設置為True,則會區分傳參類型進行緩存,官方是這樣描述的:

但在python3.9.8版本下進行測試,typed為false時,按照官方的測試方法測試得到的還是會被當成不同的結果處理,這個時候typed為false還是為true都會區別緩存,這與官方文檔的描述存在差異:

執行結果

但如果是多參數的情況下,則會被當成壹個結果:

執行結果

這個時候設置typed為true時,則會區別緩存:

執行結果

當傳參個數大於1時,才符合官方的說法,不清楚是不是官方舉例有誤

當傳遞的參數是dict、list等的可變參數時,lru_cache是不支持的,會報錯:

報錯結果

緩存 緩存位置 是否支持可變參數 是否支持分布式 是否支持過期時間設置 支持的數據結構 需單獨安裝 redis 緩存在redis管理的內存中 是 是 是 支持5種數據結構 是 lru_cache 緩存在應用進程的內存中,應用被關閉則被清空 否 否 否 字典(參數為:key,結果為:value) 否

經過上面的分析,lru_cache 功能相對於redis來說要簡單許多,但使用起來更加方便,適用於小型的單體應用。如果涉及的緩存的數據種類比較多並且想更好的管理緩存、或者需要緩存數據有過期時間(類似登錄驗證的token)等,使用redis是優於lru_cache的。