當前位置:成語大全網 - 新華字典 - 用python生成隨機數的幾種方法

用python生成隨機數的幾種方法

1 從給定參數的正態分布中生成隨機數

當考慮從正態分布中生成隨機數時,應當首先知道正態分布的均值和方差(標準差),有了這些,就可以調用python中現有的模塊和函數來生成隨機數了。這裏調用了Numpy模塊中的random.normal函數,由於邏輯非參簡單,所有直接貼上代碼如下:

import numpy as np# 定義從正態分布中獲取隨機數的函數def get_normal_random_number(loc, scale): """ :param loc: 正態分布的均值 :param scale: 正態分布的標準差 :return:從正態分布中產生的隨機數 """ # 正態分布中的隨機數生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數調用 n = get_normal_random_number(loc=2, scale=2) # 打印結果 print(n) # 結果:3.275192443463058

2 從給定參數的均勻分布中獲取隨機數的函數

考慮從均勻分布中獲取隨機數的時候,要事先知道均勻分布的下界和上界,然後調用Numpy模塊的random.uniform函數生成隨機數。

import numpy as np# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 """ # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 主模塊if __name__ == "__main__": # 函數調用 n = get_uniform_random_number(low=2, high=4) # 打印結果 print(n) # 結果:2.4462417140153114

3 按照指定概率生成隨機數

有時候我們需要按照指定的概率生成隨機數,比如已知盒子中每種顏色的球的比例,猜測下壹次取出的球的顏色。在這裏介紹的問題和上面的例子相似,要求給定壹個概率列表,從列表對應的數字列表或區間列表中生成隨機數,分兩部分討論。

3.1 按照指定概率從數字列表中隨機抽取數字

假設給定壹個數字列表和壹個與之對應的概率列表,兩個列表對應位置的元素組成的元組即表示該數字在數字列表中以多大的概率出現,那麽如何根據這些已知條件從數字列表中按概率抽取隨機數呢?在這裏我們考慮用均勻分布來模擬概率,代碼如下:

import numpy as npimport random# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 """ # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從壹個數字列表中以壹定的概率取出對應區間中數字的函數def get_number_by_pro(number_list, pro_list): """ :param number_list:數字列表 :param pro_list:數字對應的概率列表 :return:按概率從數字列表中抽取的數字 """ # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可叠代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 返回值 return number# 主模塊if __name__ == "__main__": # 數字列表 num_list = [1, 2, 3, 4, 5] # 對應的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數調用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結果 print(n) # 結果:1

3.2 按照指定概率從區間列表中的某個區間內生成隨機數

給定壹個區間列表和壹個與之對應的概率列表,兩個列表相應位置的元素組成的元組即表示某數字出現在某區間內的概率是多少,已知這些,我們如何生成隨機數呢?這裏我們通過兩次使用均勻分布達到目的,代碼如下:

import numpy as npimport random# 定義從均勻分布中獲取隨機數的函數def get_uniform_random_number(low, high): """ :param low: 均勻分布的下界 :param high: 均勻分布的上界 :return: 從均勻分布中產生的隨機數 """ # 均勻分布的隨機數生成 number = np.random.uniform(low, high) # 返回值 return number# 定義從壹個數字列表中以壹定的概率取出對應區間中數字的函數def get_number_by_pro(number_list, pro_list): """ :param number_list:數字列表 :param pro_list:數字對應的概率列表 :return:按概率從數字列表中抽取的數字 """ # 用均勻分布中的樣本值來模擬概率 x = random.uniform(0, 1) # 累積概率 cum_pro = 0.0 # 將可叠代對象打包成元組列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x < cum_pro: # 從區間[number. number - 1]上隨機抽取壹個值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模塊if __name__ == "__main__": # 數字列表 num_list = [1, 2, 3, 4, 5] # 對應的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函數調用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印結果 print(n) # 結果:3.49683787011193