當前位置:成語大全網 - 新華字典 - solr和elasticsearch對比,有啥差別嗎

solr和elasticsearch對比,有啥差別嗎

從兩個方面對ElasticSearch和Solr進行對比,從關系型數據庫中的導入速度和模糊查詢的速度。

單機對比

1. Solr 發布了4.0-alpha,試了壹下,發現需要自己修改schema,好處是它自帶壹個data importer。在自己的計算機上測試了壹下,導入的性能大概是:14分鐘導入 3092730 條記錄,約合 3682條/秒。

2. 3百萬條記錄的情況下,模糊查詢和排序基本都在1秒內返回

3. 剛才的測試,是每個field單獨存儲,現在修改了壹下配置文件,增加了壹個copyField,所有的field都拷貝壹份到text這個field裏面去,導入的性能大概是:19分鐘導入了3092730 條記錄,約合 2713條/秒

4. 3百萬條記錄的情況下,針對text的模糊查詢基本在1秒內返回,但是針對所有記錄的排序,大概要2~3秒

5. 使用 elasticsearch 0.19.8,缺省配置,用單任務導入,導入性能是:20分鐘導入了3092730 條記錄,約合2577條/秒

6. 3百萬條記錄的情況下,查詢基本上在1秒內返回,但是模糊查詢比較慢,第壹次要10秒,後來大概要1~3秒。加上排序大概需要5秒,整體排序基本100ms

查詢及排序的指令:

{

"query": {

"query_string": {

"query": "*999*"

}

},

"sort": [

{

"TIME_UP": {

"order": "asc"

}

}

]

}

7. Es0.19.8,用兩個任務導入,導入性能是:13分鐘導入了3092730 條記錄,約合3965條/秒

8. Solr全部建好索引後,占用磁盤空間是1.2G,es占用磁盤空間是4G

單機對比2

在壹臺Intel i7,32G內存的機器上,重新跑這兩個的對比。不過有個重大的區別在於,Solr是在這臺性能很好的機器上跑,而es的導入進程則是在壹臺Intel 四核 2.5G,4G內存的機器上跑的,也許會有性能的差異。ES版本0.19.8,Solr版本4.0-ALPHA。

1. Solr的導入性能:3400萬條記錄,用時62分鐘,平均9140條/秒,占用空間12.75G

2. 使用 *999* 這樣的模糊查詢,3秒以內返回,稍長壹點的查詢條件 *00100014*,也是2~3秒返回

3. Es的導入性能(設置Xmx為10G):3400萬條記錄,用時40分鐘,平均14167條/秒,占用空間33.26G,客戶端采用4個並發。

4. 使用 *999* 這樣的模糊查詢,9秒返回,稍長壹點的查詢條件 *00100014*,11.8秒返回

5. 如果不是針對所有字段查詢,而是針對某個特定字段,比如 SAM_CODE: *00100014*,那麽也是1秒以內返回。

6. 結論:es的查詢效率也可以很高,只是我們還不會用。

7. 結論2:es有個設置是把所有字段放壹塊的那個,缺省是放壹起,但是不知道為什麽沒起到應有的作用。

備註:

1. Solr第壹次的那個內存使用的是缺省設置,這次改為10G,結果導入性能反而變差了,400萬條記錄,用了8分鐘,平均8333條/秒,不知道為什麽。

2. 改回缺省的內存配置,導入速度仍然慢。

3. 重啟Linux,用10G的內存配置,再導入,5030萬條記錄,用時92分,約9112條/秒,說明導入速度和內存配置沒有大差別

4. 在10G配置的情況下,檢索速度也差別不大。

5. 為了搞清楚lucene4.0和solr4.0的進步有多大,下載了solr3.6.1,所幸的是4.0的配置文件在3.6.1上也可以用,所以很快就搭起來進行測試,導入性能為:3400萬條記錄,用時55分鐘,約10303條/秒,占用空間13.85G。查詢性能:*999*第壹次11.6s,*00100014* 27.3s,相比4.0ALPHA的結果(5000萬結果當中,*999*第壹次2.6s,*00100014*第壹次2.5s)來說,慢了很多,與es的性能差不多,因此,也許lucene4.0真的對性能有大幅提升?

集群對比:

采用4臺同樣配置(Intel i7,32G內存)的Centos 6.3組成的集群,進行對比。

1. 首先是es,很方便的就組成了壹個Cluster,等上壹個3400萬條的Index全部均衡負載之後進行測試,導入到另外壹個Index當中。

2. 導入性能:8500萬條記錄,用時72分鐘,約為19676條/秒。在前5千萬條記錄導入時的速度在2萬/條以上,初始的速度在2.2萬/條。占用空間78.6G(由於有冗余,實際占用空間為157.2G)

3. 查詢性能:

*999*第壹次13.5秒,第二次19.5秒,第三次7.4秒,第四次7.1秒,第五次7.1秒

*00100014*第壹次17.2秒,第二次16.6秒,第三次17.9秒,第四次16.7秒,第五次17.1秒

SAM_CODE:*999*,0.8s,1.3s,0.02s,0.02s,0.02s

SAM_CODE: *00100014*,0.1s,0.1s,0.02s,0.03s,0.05s

4. Solr4.0-ALPHA,SolrCloud的配置還算簡單,啟動壹個ZooKeeper,然後其他三臺機器訪問這個地址,就可以組成壹個Cloud:

機器1: nohup java -Xms10G -Xmx10G -Xss256k -Djetty.port=8983 -Dsolr.solr.home="./example-DIH/solr/" -Dbootstrap_confdir=./example-DIH/solr/db/conf/ -Dcollection.configName=xabconf3 -DzkRun -DnumShards=4 -jar start.jar &

其他機器:nohup java -Xms10G -Xmx10G -Dsolr.solr.home="./example-DIH/solr/" -DzkHost=192.168.2.11:9983 -jar start.jar &

但是在執行 data import 的時候,頻繁出現 OutOfMemoryError: unable to create new native thread。查了很多資料,把Linux的ulimit當中的nproc改成10240,把Xss改成256K,都解決不了問題。暫時沒有辦法進行。

結論

1. 導入性能,es更強

2. 查詢性能,solr 4.0最好,es與solr 3.6持平,可以樂觀的認為,等es采用了lucene4之後,性能會有質的提升

3. Es采用SAM_CODE這樣的查詢性能很好,但是用_all性能就很差,而且差別非常大,因此,個人認為在目前的es情況下,仍然有性能提升的空間,只是現在還沒找到方法。