當前位置:成語大全網 - 新華字典 - 求基因工程文章

求基因工程文章

迄今為止,基因工程還沒有用於人體,但已在從細菌到家畜的幾乎所有非人生命物體上做了實驗,並取得了成功。事實上,所有用於治療糖尿病的胰島素都來自壹種細菌,其DNA中被插入人類可產生胰島素的基因,細菌便可自行復制胰島素。基因工程技術使得許多植物具有了抗病蟲害和抗除草劑的能力;在美國,大約有壹半的大豆和四分之壹的玉米都是轉基因的。目前,是否該在農業中采用轉基因動植物已成為人們爭論的焦點:支持者認為,轉基因的農產品更容易生長,也含有更多的營養(甚至藥物),有助於減緩世界範圍內的饑荒和疾病;而反對者則認為,在農產品中引入新的基因會產生副作用,尤其是會破壞環境。

基因工程的前景科學界預言,21世紀是壹個基因工程世紀。基因工程是在分子水平對生物遺傳作人為幹預,要認識它,我們先從生物工程談起:生物工程又稱生物技術,是壹門應用現代生命科學原理和信息及化工等技術,利用活細胞或其產生的酶來對廉價原材料進行不同程度的加工,提供大量有用產品的綜合性工程技術。

生物工程的基礎是現代生命科學、技術科學和信息科學。生物工程的主要產品是為社會提供大量優質發酵產品,例如生化藥物、化工原料、能源、生物防治劑以及食品和飲料,還可以為人類提供治理環境、提取金屬、臨床診斷、基因治療和改良農作物品種等社會服務。

生物工程主要有基因工程、細胞工程、酶工程、蛋白質工程和微生物工程等5個部分。其中基因工程就是人們對生物基因進行改造,利用生物生產人們想要的特殊產品。隨著DNA的內部結構和遺傳機制的秘密壹點壹點呈現在人們眼前,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去幹預生物的遺傳特性。

美國的吉爾伯特是堿基排列分析法的創始人,他率先支持人類基因組工程 如果將壹種生物的DNA中的某個遺傳密碼片斷連接到另外壹種生物的DNA鏈上去,將DNA重新組織壹下,不就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型嗎?這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個“基因”與那種生物的那個“基因”重新“施工”,“組裝”成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為“基因工程”,或者稱之為“遺傳工程”。

人類基因工程走過的主要歷程怎樣呢?1866年,奧地利遺傳學家孟德爾神父發現生物的遺傳基因規律;1868年,瑞士生物學家弗裏德裏希發現細胞核內存有酸性和蛋白質兩個部分。酸性部分就是後來的所謂的DNA;1882年,德國胚胎學家瓦爾特弗萊明在研究蠑螈細胞時發現細胞核內的包含有大量的分裂的線狀物體,也就是後來的染色體;1944年,美國科研人員證明DNA是大多數有機體的遺傳原料,而不是蛋白質;1953年,美國生化學家華森和英國物理學家克裏克宣布他們發現了DNA的雙螺旋結果,奠下了基因工程的基礎;1980年,第壹只經過基因改造的老鼠誕生;1996年,第壹只克隆羊誕生;1999年,美國科學家破解了人類第 22組基因排序列圖;未來的計劃是可以根據基因圖有針對性地對有關病癥下藥。

人類基因組研究是壹項生命科學的基礎性研究。有科學家把基因組圖譜看成是指路圖,或化學中的元素周期表;也有科學家把基因組圖譜比作字典,但不論是從哪個角度去闡釋,破解人類自身基因密碼,以促進人類健康、預防疾病、延長壽命,其應用前景都是極其美好的。人類10萬個基因的信息以及相應的染色體位置被破譯後,破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。將成為醫學和生物制藥產業知識和技術創新的源泉。美國的貝克維茲正在觀察器皿中的菌落,他曾對人類基因組工程提出警告。

科學研究證明,壹些困擾人類健康的主要疾病,例如心腦血管疾病、糖尿病、肝病、癌癥等都與基因有關。依據已經破譯的基因序列和功能,找出這些基因並針對相應的病變區位進行藥物篩選,甚至基於已有的基因知識來設計新藥,就能“有的放矢”地修補或替換這些病變的基因,從而根治頑癥。基因藥物將成為21世紀醫藥中的耀眼明星。基因研究不僅能夠為篩選和研制新藥提供基礎數據,也為利用基因進行檢測、預防和治療疾病提供了可能。比如,有同樣生活習慣和生活環境的人,由於具有不同基因序列,對同壹種病的易感性就大不壹樣。明顯的例子有,同為吸煙人群,有人就易患肺癌,有人則不然。醫生會根據各人不同的基因序列給予因人而異的指導,使其養成科學合理的生活習慣,最大可能地預防疾病。

人類基因工程的開展使破譯人類全部DNA指日可待。

信息技術的發展改變了人類的生活方式,而基因工程的突破將幫助人類延年益壽。目前,壹些國家人口的平均壽命已突破80歲,中國也突破了70歲。有科學家預言,隨著癌癥、心腦血管疾病等頑癥的有效攻克,在2020至2030年間,可能出現人口平均壽命突破100歲的國家。到2050年,人類的平均壽命將達到90至95歲。

人類將挑戰生命科學的極限。1953年2月的壹天,英國科學家弗朗西斯·克裏克宣布:我們已經發現了生命的秘密。他發現DNA是壹種存在於細胞核中的雙螺旋分子,決定了生物的遺傳。有趣的是,這位科學家是在劍橋的壹家酒吧宣布了這壹重大科學發現的。破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。1987年,美國科學家提出了“人類基因組計劃”,目標是確定人類的全部遺傳信息,確定人的基因在23對染色體上的具體位置,查清每個基因核苷酸的順序,建立人類基因庫。1999年,人的第22對染色體的基因密碼被破譯,“人類基因組計劃”邁出了成功的壹步。可以預見,在今後的四分之壹世紀裏,科學家們就可能揭示人類大約5000種基因遺傳病的致病基因,從而為癌癥、糖尿病、心臟病、血友病等致命疾病找到基因療法。

繼2000年6月26日科學家公布人類基因組"工作框架圖"之後,中、美、日、德、法、英等6國科學家和美國塞萊拉公司2001年2月12日聯合公布人類基因組圖譜及初步分析結果。這次公布的人類基因組圖譜是在原"工作框架圖"的基礎上,經過整理、分類和排列後得到的,它更加準確、清晰、完整。人類基因組蘊涵有人類生、老、病、死的絕大多數遺傳信息,破譯它將為疾病的診斷、新藥物的研制和新療法的探索帶來壹場革命。人類基因組圖譜及初步分析結果的公布將對生命科學和生物技術的發展起到重要的推動作用。隨著人類基因組研究工作的進壹步深入,生命科學和生物技術將隨著新的世紀進入新的紀元。

基因工程在20世紀取得了很大的進展,這至少有兩個有力的證明。壹是轉基因動植物,壹是克隆技術。轉基因動植物由於植入了新的基因,使得動植物具有了原先沒有的全新的性狀,這引起了壹場農業革命。如今,轉基因技術已經開始廣泛應用,如抗蟲西紅柿、生長迅速的鯽魚等。1997年世界十大科技突破之首是克隆羊的誕生。這只叫“多利”母綿羊是第壹只通過無性繁殖產生的哺乳動物,它完全秉承了給予它細胞核的那只母羊的遺傳基因。“克隆”壹時間成為人們註目的焦點。盡管有著倫理和社會方面的憂慮,但生物技術的巨大進步使人類對未來的想象有了更廣闊的空間。

基因工程大事記

1860至1870年 奧地利學者孟德爾根據豌豆雜交實驗提出遺傳因子概念,並總結出孟德爾遺傳定律。

1909年 丹麥植物學家和遺傳學家約翰遜首次提出“基因”這壹名詞,用以表達孟德爾的遺傳因子概念。

1944年 3位美國科學家分離出細菌的DNA(脫氧核糖核酸),並發現DNA是攜帶生命遺傳物質的分子。

1953年 美國人沃森和英國人克裏克通過實驗提出了DNA分子的雙螺旋模型。

1969年 科學家成功分離出第壹個基因。

1980年 科學家首次培育出世界第壹個轉基因動物轉基因小鼠。

1983年 科學家首次培育出世界第壹個轉基因植物轉基因煙草。

1988年 K.Mullis發明了PCR技術。

1990年10月 被譽為生命科學“阿波羅登月計劃”的國際人類基因組計劃啟動。

1998年 壹批科學家在美國羅克威爾組建塞萊拉遺傳公司,與國際人類基因組計劃展開競爭。

1998年12月 壹種小線蟲完整基因組序列的測定工作宣告完成,這是科學家第壹次繪出多細胞動物的基因組圖譜。

1999年9月 中國獲準加入人類基因組計劃,負責測定人類基因組全部序列的1%。中國是繼美、英、日、德、法之後第6個國際人類基因組計劃參與國,也是參與這壹計劃的惟壹發展中國家。

1999年12月1日 國際人類基因組計劃聯合研究小組宣布,完整破譯出人體第22對染色體的遺傳密碼,這是人類首次成功地完成人體染色體完整基因序列的測定。

2000年4月6日 美國塞萊拉公司宣布破譯出壹名實驗者的完整遺傳密碼,但遭到不少科學家的質疑。

2000年4月底 中國科學家按照國際人類基因組計劃的部署,完成了1%人類基因組的工作框架圖。

2000年5月8日 德、日等國科學家宣布,已基本完成了人體第21對染色體的測序工作。

2000年6月26日 科學家公布人類基因組工作草圖,標誌著人類在解讀自身“生命之書”的路上邁出了重要壹步。

2000年12月14日 美英等國科學家宣布繪出擬南芥基因組的完整圖譜,這是人類首次全部破譯出壹種植物的基因序列。

2001年2月12日 中、美、日、德、法、英6國科學家和美國塞萊拉公司聯合公布人類基因組圖譜及初步分析結果。

科學家首次公布人類基因組草圖“基因信息”。

基因研究 各國爭先恐後 基因時代的全球版圖

讓我們看壹下在新世紀到來時,世界各國的基因科學研究狀況。

英國:早在20世紀80年代中期,英國就有了第壹家生物科技企業,是歐洲國家中發展最早的。如今它已擁有560家生物技術公司,歐洲70家上市的生物技術公司中,英國占了壹半。

德國:德國政府認識到,生物科技將是保持德國未來經濟競爭力的關鍵,於是在1993年通過立法,簡化生物技術企業的審批手續,並且撥款1.5億馬克,成立了3個生物技術研究中心。此外,政府還計劃在未來5年中斥資12億馬克,用於人類基因組計劃的研究。1999年德國研究人員申請的生物技術專利已經占到了歐洲的14%。

法國:法國政府在過去10年中用於生物技術的資金已經增加了10倍,其中最典型的項目就是1998年在巴黎附近成立的號稱“基因谷”的科技園區,這裏聚集著法國最有潛力的新興生物技術公司。另外20個法國城市也準備仿照“基因谷”建立自己的生物科技園區。

西班牙:馬爾制藥公司是該國生物科技企業的代表,該公司專門從海洋生物中尋找抗癌物質。其中最具開發價值的是ET-743,這是壹種從加勒比海和地中海的海底噴出物中提取的紅色抗癌藥物。ET-743計劃於2002年在歐洲註冊生產,將用於治療骨癌、皮膚癌、卵巢癌、乳腺癌等多種常見癌癥。

印度:印度政府資助全國50多家研究中心來收集人類基因組數據。由於獨特的“種姓制度”和壹些偏僻部落的內部通婚習俗,印度人口的基因庫是全世界保存得最完整的,這對於科學家尋找遺傳疾病的病理和治療方法來說是個非常寶貴的資料庫。但印度的私營生物技術企業還處於起步階段。

日本:日本政府已經計劃將明年用於生物技術研究的經費增加23%。壹家私營企業還成立了“龍基因中心”,它將是亞洲最大的基因組研究機構。

新加坡:新加坡宣布了壹項耗資6000萬美元的基因技術研究項目,研究疾病如何對亞洲人和白種人產生不同影響。該計劃重點分析基因差異以及什麽樣的治療方法對亞洲人管用,以最終獲得用於確定和治療疾病的新知識;並設立高技術公司來制造這壹研究所衍生出的藥物和醫療產品。

中國:參與了人類基因組計劃,測定了1%的序列,這為21世紀的中國生物產業帶來了光明。這“1%項目”使中國走進生物產業的國際先進行列,也使中國理所當然地分享人類基因組計劃的全部成果、資源與技術。

基因工程與農牧業、食品工業

運用基因工程技術,不但可以培養優質、高產、抗性好的農作物及畜、禽新品種,還可以培養出具有特殊用途的動、植物。

1.轉基因魚

生長快、耐不良環境、肉質好的轉基因魚(中國)。

2.轉基因牛

乳汁中含有人生長激素的轉基因牛(阿根廷)。

3.轉黃瓜抗青枯病基因的甜椒

4.轉魚抗寒基因的番茄

5.轉黃瓜抗青枯病基因的馬鈴薯

6.不會引起過敏的轉基因大豆

7.超級動物

導入貯藏蛋白基因的超級羊和超級小鼠

8.特殊動物

導入人基因具特殊用途的豬和小鼠

9.抗蟲棉

蘇雲金芽胞桿菌可合成毒蛋白殺死棉鈴蟲,把這部分基因導入棉花的離體細胞中,再組織培養就可獲得抗蟲棉。

[編輯本段]基因工程與環境保護

基因工程做成的DNA探針能夠十分靈敏地檢測環境中的病毒、細菌等汙染。

利用基因工程培育的指示生物能十分靈敏地反映環境汙染的情況,卻不易因環境汙染而大量死亡,甚至還可以吸收和轉化汙染物。

基因工程與環境汙染治理

基因工程做成的“超級細菌”能吞食和分解多種汙染環境的物質。

(通常壹種細菌只能分解石油中的壹種烴類,用基因工程培育成功的“超級細菌”卻能分解石油中的多種烴類化合物。有的還能吞食轉化汞、鎘等重金屬,分解DDT等毒害物質。)

基因治療可待 醫學革命到來

“基因”釋意 現在我們通用的“基因”壹詞,是由“gene”音譯而來的。基因就是決定壹個生物物種的所有生命現象的最基本的因子。科學家們認為這個詞翻譯得不僅音順,意義也貼切,是科學名詞外語漢譯的典範。基因作為機體內的遺傳單位,不僅可以決定我們的相貌、高矮,而且它的異常會不可避免地導致各種疾病的出現。某些缺陷基因可能會遺傳給後代,有些則不能。基因治療的提出最初是針對單基因缺陷的遺傳疾病,目的在於有壹個正常的基因來代替缺陷基因或者來補救缺陷基因的致病因素。

用基因治病是把功能基因導入病人體內使之表達,並因表達產物——蛋白質發揮了功能使疾病得以治療。基因治療的結果就像給基因做了壹次手術,治病治根,所以有人又把它形容為“分子外科”。

我們可以將基因治療分為性細胞基因和體細胞基因治療兩種類型。性細胞基因治療是在患者的性細胞中進行操作,使其後代從此再不會得這種遺傳疾病。體細胞基因治療是當前基因治療研究的主流。但其不足之處也很明顯,它並沒前改變病人已有單個或多個基因缺陷的遺傳背景,以致在其後代的子孫中必然還會有人要患這壹疾病。

無論哪壹種基因治療,目前都處於初期的臨床試驗階段,均沒有穩定的療效和完全的安全性,這是當前基因治療的研究現狀。

可以說,在沒有完全解釋人類基因組的運轉機制、充分了解基因調控機制和疾病的分子機理之前進行基因治療是相當危險的。增強基因治療的安全性,提高臨床試驗的嚴密性及合理性尤為重要。盡管基因治療仍有許多障礙有待克服,但總的趨勢是令人鼓舞的。據統計,截止1998年底,世界範圍內已有373個臨床法案被實施,累計3134人接受了基因轉移試驗,充分顯示了其巨大的開發潛力及應用前景。正如基因治療的奠基者們當初所預言的那樣,基因治療的出現將推動新世紀醫學的革命性變化。

[編輯本段]基因工程將使傳統中藥進入新時代

5月13日 13日參加“中藥與天然藥物”國際研討會的中國專家認為,轉基因藥用植物或器官研究、有效次生代謝途徑關鍵酶基因的克隆研究、中藥DNA分子標記以及中藥基因芯片的研究等,已成為當今中藥研究的熱點,並將使傳統中藥進入壹個嶄新的時代。

據北京大學天然藥物及仿生學藥物國家重點實驗室副主任果德安介紹,轉基因藥用植物或器官和組織研究是中國近幾年中藥生物技術比較活躍的領域之壹。

在轉基因藥用植物的研究方面,中國醫學科學院藥用植物研究所分別通過發根農桿菌和根癌農桿菌誘導丹參形成毛狀根和冠癭瘤進而再分化形成植株,他們將其與栽培的丹參作了形態和化學成分比較研究,結果發現毛狀根再生的植株葉片皺縮、節間縮短、植株矮化、須根發達等;而冠癭組織再生的植株株形高大、根系發達、產量高,丹參酮的含量高於對照,這對丹參的良種繁育,提高藥材質量具有重要意義。

果德安說,研究中藥化學成分的生物合成途徑,不僅可以有助於這些化學成分的仿生合成,而且還可以人為地對這些化學成分的合成進行生物調控,有利於定向合成所需要的化學成分。國內有關這方面的研究已經開始起步。

據了解,中國在中藥研究中生物技術應用方面的研究已經漸漸興起,有些方面如藥用植物組織與細胞培養,已積累了二三十年的經驗,理論和技術都相當成熟,而且在全國範圍內已形成了壹定的規模。其中,中藥材細胞工程研究正處於鼎盛時期。

果德安介紹說,面對許多野生植物瀕於滅絕,壹些特殊環境下的植物引種困難等問題,中國科學工作者開始探索通過高等植物細胞、器官等的大量培養生產有用的次生代謝物。研究內容包括通過高產組織或細胞系的篩選與培養條件的優化和通過對次生代謝產物生物合成途徑的調控等,達到降低成本及提高次生代謝產物產量的目的。

此外,近來利用植物懸浮培養細胞或不定根、發狀根對外源化學成分進行生物轉化的研究也在悄然興起,並已取得了壹定的進展。

不僅如此,科學工作者更加重視對次生代謝產物生物合成途徑調控的研究。這些研究都取得了令人興奮的成果,說明中國的藥用植物的細胞培養已進入壹個嶄新的時代。

果德安認為,今後研究的主要方向應集中在價值大且瀕危的藥用植物的組織細胞培養;對次生代謝產物的產生進行調控;壹些重要中藥化學成分的生物轉化。另外,還應該加強動物藥的生物技術研究。

[編輯本段]基因工程與醫藥衛生

1.基因工程藥品的生產:

許多藥品的生產是從生物組織中提取的。受材料來源限制產量有限,其價格往往十分昂貴。

微生物生長迅速,容易控制,適於大規模工業化生產。若將生物合成相應藥物成分的基因導入微生物細胞內,讓它們產生相應的藥物,不但能解決產量問題,還能大大降低生產成本。

⑴基因工程胰島素

胰島素是治療糖尿病的特效藥,長期以來只能依靠從豬、牛等動物的胰腺中提取,100Kg胰腺只能提取4-5g的胰島素,其產量之低和價格之高可想而知。

將合成的胰島素基因導入大腸桿菌,每2000L培養液就能產生100g胰島素!大規模工業化生產不但解決了這種比黃金還貴的藥品產量問題,還使其價格降低了30%-50%!

⑵基因工程幹擾素

幹擾素治療病毒感染簡直是“萬能靈藥”!過去從人血中提取,300L血才提取1mg!其“珍貴”程度自不用多說。

基因工程人幹擾素α-2b(安達芬) 是我國第壹個全國產化基因工程人幹擾素α-2b,具有抗病毒,抑制腫瘤細胞增生,調節人體免疫功能的作用,廣泛用於病毒性疾病治療和多種腫瘤的治療,是當前國際公認的病毒性疾病治療的首選藥物和腫瘤生物治療的主要藥物。

⑶其它基因工程藥物

人造血液、白細胞介素、乙肝疫苗等通過基因工程實現工業化生產,均為解除人類的病苦,提高人類的健康水平發揮了重大的作用。

2.基因診斷與基因治療:

運用基因工程設計制造的“DNA探針”檢測肝炎病毒等病毒感染及遺傳缺陷,不但準確而且迅速。通過基因工程給患有遺傳病的人體內導入正常基因可“壹次性”解除病人的疾苦。

◆SCID的基因工程治療

重癥聯合免疫缺陷(SCID)患者缺乏正常的人體免疫功能,只要稍被細菌或者病毒感染,就會發病死亡。這個病的機理是細胞的壹個常染色體上編碼腺苷酸脫氨酶(簡稱ADA)的基因(ada)發生了突變。可以通過基因工程的方法治療。

基因工程——產最高效藥物的轉基因動物

轉基因動物是壹種個體表達反應系統,代表了當今時代藥物生產的最新成就,也是最復雜、最具有廣闊前景的生物反應系統。就通過轉基因動物家畜來生產基因藥物而言,最理想的表達場所是乳腺。因為乳腺是壹個外泌器官,乳汁不進入體內循環,不會影響到轉基因動物本身的生理代謝反應。從轉基因動物的乳汁中獲取的基因產物,不但產量高、易提純,而且表達的蛋白經過充分的修飾加工,具有穩定的生物活性,因此又稱為“動物乳腺生物反應器”。所以用轉基因牛、羊等家畜的乳腺表達人類所需蛋白基因,就相當於建壹座大型制藥廠,這種藥物工廠顯然具有投資少、效益高、無公害等優點。

從生物學的觀點來看,生物機體對能量的利用和轉化的效率是當今世界上任何機械裝置所望塵莫及的。因此,通過轉基因動物來生產藥物是迄今為止人們所能想象得出的最為有效、最為先進的系統。

轉基因動物的乳腺可以源源不斷地提供目的基因的產生(藥物蛋白質),不但產量高,而且表達的產物已經過充分修飾和加工,具有穩定的生物活性。作為生物反應器的轉基因運動又可無限繁殖,故具有成本低、周期短和效益好的優點。壹些由轉基因家畜乳汁中分離的藥物蛋白正用於臨床試驗。

目前,我國在轉基因動物的研究領域,已獲得了轉基因小鼠、轉基因兔、轉基因魚、轉基因豬、轉基因羊和轉基因牛。20世紀90年代,國家“863”高技術計劃已將轉基因羊——乳腺生物反應器的研究列為重大項目。

雖然目前通過轉基因動物(家畜)——乳腺生物反應器生產的藥物或珍貴蛋白尚未形成產業,但據國外經濟學家預測,大約10年後,轉基因運動生產的藥品就會鼎足於世界市場。那時,單是藥物的年銷售額就超過250億美元(還不包括營養蛋白和其他產品),從而使轉基因動物(家畜)——乳腺生物反應器產業成為最具有高額利潤的新型工業。

2000年12月25日,北京三只轉基因羊的問世以及在此之前各種轉基因蔬菜、水稻、棉花等,使人們對轉基因技術備加關註,那麽轉基因技術到底是壹種什麽樣的神秘技術呢?

北京市順義區三高科技農業試驗示範區的北京興綠原生物科技中心總畜牧師田雄傑先生介紹說,轉基因動物和轉基因羊的意義,不在於羊本身,而是它們身上產出的羊奶可以提取α抗胰蛋白酶,它們中的每壹只都可稱為壹座天然基因藥物制造廠,價值連城。

中國工程院院士、上海兒童醫院上海醫學遺傳研究所所長曾溢滔先生認為,轉基因動物是指通過實驗方法,人工地把人們想要研究的動物或人類基因,或者是有經濟價值的藥物蛋白質基因,通常稱為外源基因,導入動物的受精卵(或早期胚胎細胞),使之與動物本身的基因組整合在壹起,這樣外源基因能隨細胞的分裂而增殖,並能穩定地遺傳給下壹代的壹類動物。

田雄傑先生介紹,制備轉基因羊,就是將人的α抗胰蛋白酶基因通過顯微操作註進母羊受精卵的雄性細胞核,並使之與羊本身的基因整合起來,形成壹體,這種新的基因組可以穩定地遺傳到出生的小羊身上。小山羊也成了人工創造的與它們母親不同的新品系,它們的後代也將帶有這種α抗胰蛋白酶基因。這個過程有些類植物的嫁接術。

制備轉基因動物是項復雜的工作。目前,在轉基因動物研制中,外源基因與動物本身的基因組整合率低,其表達往往不理想,外源基因應有的性質得不到充分表現或不表現。實驗運動如牛、羊和豬的整合率壹般為1%左右。這種情況的原因可能是多方面的,首先是目的基因的問題,不同的外源基因表達水平不相同,因每個個體而異;其次是外源基因表達載體內部各個部分的組合和連接是否合理等;還有壹點更重要,就是外源基因到達動物基因組內整合的位置是否合理。科學家還弄不清楚整合在哪個伴置表達高,哪個位置表達低,人們還無法控制外源基因整合的位置,而只能是隨機整合。因此,整合率低也就在所難免。

盡管轉基因動物還有壹些技術亟待解決,但是轉基因動物研究所取得的巨大進展,特別是它在各個領域中的廣泛應用,已經對生物醫學、畜牧業和藥物產業產生了深刻影響。