因為an≥2n》;=2
所以an+1/an =【1+1/(N2+n)】+1/(2n * an)
an+1/an*an/an-1*。。。。。。& lt【1+1/(n^2+n)]+1/2^(n+1】*【1+1/(n-1^2+n-1)]+1/2^n】。。。。。兩邊相乘,取對數ln(an+1/a2)《ln[1+1/(n^2+n)]+1/2^(n+1)+ln【1+1/(n^2+n)]+1/2^(n+1)+1。。。。& lt1/(n^2+n)]+1/2^(n+1的+1/(n^2+n)]+1/2^(n+1)+。。。。。獲得分裂項的和以及相等比率的和。
ln(an+1/a2)& lt;1/2-1/(n+1)+1/4結束an+1